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Solvent-accessible surface area: How well
can be applied to hot-spot detection?
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ABSTRACT

A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features

of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based fea-

tures for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets,

explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of

more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discern-

ing between hot- and null-spots, while presenting low correlations. Residue standardization such as relSASAi or rel/resSASAi,

improved the features as a tool to predict DDGbinding values. A new method using support machine learning algorithms was

developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and

0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set.
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INTRODUCTION

Proteins and proteins-based interactions, like protein-

protein interactions (PPI) or protein-DNA interactions

(PDI), have been the main focus of interest of several

research groups and pharmaceutical companies world-

wide due to their importance in many biological proc-

esses, such as signal transduction pathways, enzymatic

regulation or acting as catalysts, carriers, and many

others.1,2 Proteins tend to interact and bind with other

macromolecules, through their interfaces, forming stable

complexes. Studies have shown that these interfaces

depend almost exclusively on central regions that account

for the majority of the binding energy: the hot-spots

(HS).3–5 They can be experimentally found by meas-

uring the binding free energy difference (DDGbinding)

upon alanine mutation. Although this can be presented

as the general description of a HS, there are different

perspectives regarding the binding free energy difference

associated with this kind of residues. Some authors

define HS as residues with DDGbinding higher than 2.0

kcal/mol; while residues that cause a binding free energy

difference lower than 2.0 kcal/mol are defined as null-

spots (NS).5 Others use a DDGbinding higher than 1.5

kcal/mol for HS and lower than 0.5 for NS.6 In this

work, we will differentiate residues in hot-spots (>2.0

kcal/mol) and null-spots (<2.0 kcal/mol).

An accurate detection of HS is of primal importance.

Alanine Scanning Mutagenesis (ASM) is one of the com-

mon methods for the characterization of these residues,

but since the experimental ASM methodology is time

consuming and hard to execute, various computational

methods have emerged. These can be classified in three

groups: empirical functions or methods that use

knowledge-based simplified models to evaluate complex

association; fully atomistic methods that perform muta-

tions of the interfacial residues to estimate binding free

energies; and lastly, feature-based approaches, which tend

to be more qualitative than quantitative. Thermodynamic

Integration (TI) or Free Energy Perturbation (FEP)7,8

are the most accurate methods available to calculate the

binding strength of protein complexes, since it accurately
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predicts free energy differences from an initial to a final

state. However, they are also the most demanding com-

putational methods, which limit the screening of a large

number of structural perturbations, and are commonly

replaced by faster methods like the Molecular Mechanics/

Poisson-Boltzmann Surface Area (MM-PBSA) method.9–12

As for the knowledge-based methods they generally use a

set of simplified physical models for the characterization of

the complex.13 Such was the case in the work of Kortemme

and Baker14 that developed a quantitative model for the

determination of binding energies, using an all-atom

rotamer description of the side-chains and a free energy

function consisting in a Lennard Jones potential, solvation

interactions and hydrogen bonding. The feature-based

methods use a variety of different chemical and physical

characteristics of PPI. However, solvent-accessible surface

area (SASA) features seem to be commonly used without a

comprehensive knowledge why and even how well do they

work.15–25 The “O-Ring theory” or the “Water Exclusion”

hypothesis proposed by Bogan and Thorn states was the

first application of SASA features and states that the hot-

spots are surrounded by a region of null-spots that lead to

solvent and results in a lower local dielectric constant envi-

ronment and enhancement of specific electrostatic and

hydrogen bond interactions.5 This theory was followed by

many authors such as Guharoy and Chakrabarti that

believed the interface could be divided in two different

regions, a core and a rim. The rim would be formed by res-

idues with partial accessibility to solvent, with few hot-

spots, and the core would be formed by residues deeply

buried in the interface and a high number of hot-spots.

They also proposed a connection between the deeply buried

surface area of core residues and its contribution to the

binding free energy.16,26,27 Many other authors have

focused their attention in this subject, either by proposing

modifications to the original one (Liang et al.28) or comple-

menting it.29–32 In this work we subjected several protein-

protein (PP) and protein-DNA (PDNA) complexes to

Molecular Dynamics (MD) simulations in explicit and

implicit solvent. Several SASA features were measured and

their use as hot-spot differentiators was statistically eval-

uated. The combination of these SASA features were also

analyzed by a support vector machine learning (SVM) algo-

rithm that produced an accurate new model for predicting

hot-spots: SBHD (SASA-Based Hot-spot Detection)

method.

MATERIALS AND METHODS

System setup

Fifteen different complexes for a total of 248 interfacial

residues were studied: (i) Barnase and Barnstar (PDBID:

1BRS33); (ii) Igg1 Kappa D1.3 FV and Igg1 Kappa E5.2

FV (PDBID:1DVF34); (iii) Ribonuclease A and Ribonu-

clease Inhibitor (PDBID: 1DFJ35); (iv) Bacterial cell

division ZipA and Ftsz (PDBID: 1F4736); (v) Vascular

Endothelial Growth Factor and FLT-1 Receptor (PDBID:

1FLT37); (vi) Fibroblast Growth Factor 2 and Fibroblast

Growth Factor Receptor 1 (PDBID: 1FQ938); (vii) Igg1

Kappa D1.3 FV and Hen Egg white lysozyme (PDBID:

1VFB39); (viii) human placental RNase inhibitor (hRI)

and human angiogenin (Ang) (PDBID: 1A4Y40); (ix) C2

fragment of streptococcal protein G in complex with the

Fc domain of human IgG (PDBID: 1FCC41), (x) bovine

chymotrypsin and trypsin complexed to the inhibitor

domain of Alzheimer’s amyloid beta-protein precursor

(APPI) and basic pancreatic trypsin inhibitor (BPTI)

(PDBID: 1CBW42), (xi) Nuclear Protein EBNA1 and

DNA (PDBID: 1B3T43); (xii) Gene-regulating protein

arc and DNA (PDBID: 1BDT44); (xiii) C-Myb DNA-

Binding Domain and DNA (PDBID: 1MSE45); (xiv)

High-Mobility Group Protein D and DNA (PDBID:

1QRV46); and (xv) the complex between the MCM1

Transcriptional Regulator and MAT Alpha-2 Transcrip-

tional Repressor and DNA (PDBID: 1MNM47). These

systems were selected based on the existence of experi-

mental binding free energy (DDGbinding) values for the

interfacial residues upon alanine mutations. The proto-

nation state at physiological range of the different resi-

dues of the various proteins was determined using the

PDB2PQR server at http://nbcr-222.ucsd.edu/

pdb2pqr_1.8/48 by the PROPKA methodology49–51 that

computes the pKa values of the ionizable residues in a

protein by determining a perturbation to the model pKa

value due to the protein environment. The number of

hot- and null-spots of each system is shown in Support-

ing Information Table S1.

MD simulations

In this work the MD simulations were performed

using the AMBER952 package with the modified Cornell

force field, by Duan et al.—ff0353,54 (PP complexes)

and with the AMBER force field ff99SB (PDNA com-

plexes). We performed two different types of simulations,

with implicit and explicit solvent. The implicit solvent

simulations were performed using the Generalized Born

solvent method (GBOBC)55 and the ionic strength was

set to 0. As for the MD simulations in explicit solvent,

each system was solvated using TIP3P explicit water mol-

ecules that extended 10 Å from any edge of the box to

the protein atoms.56 An appropriate amount of counter

ions was added to neutralize the system. In each of the

simulations we started with a minimization stage, to

remove bad contacts, by steepest descent followed by

conjugated gradient. Periodic boundary conditions were

applied using the particle mesh Ewald (PME) method57

to treat long-range electrostatic interactions and the non-

bonded interactions were truncated with a 16 Å and a 10

Å cut-off, in the GB and in explicit solvent simulations,

respectively. The systems were subjected to 2 ns of
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heating procedure (in NVT ensemble) in which the tem-

perature was gradually raised to 300 K, followed by 6 ns

runs in NPT ensemble. The Langevin58,59 algorithm was

used to regulate the temperature of the system. Bond

lengths involving hydrogen were constrained using the

SHAKE algorithm60 and the equations of motion were

integrated with a 2 fs time step.

SASA features

SASA, as defined by Lee and Richards, is the area of

the surface traced by the center of a probe sphere,

whose radius is the nominal radius of the solvent, as it

rolls over the van der Waals surface of the molecule.

Twelve different SASA features were determined for the

interfacial residues with a known DDGbinding for explicit

water MD, implicit water MD, and solely from the PDB

structure. compSASAi is the solvent accessible surface

area of residue i in complex form, while monSASAi is

the residue SASA in the monomer form. DSASAi, the

SASA variation upon complexation, is determined using

these features [Eq. (1)]. relSASAi is determined using

the results from DSASA for each residue and dividing it

by the monSASAi value for the same residue, providing a

differentiation between residues with equal DSASA but

different absolute monomer SASA values [Eq. (2)]. A

further four features (comp/resSASAi, mon/resSASAi,

D/resSASAi, and rel/resSASAi), defined by Eqs. (3) to (6),

were determined employing amino-acid standardization

by dividing the previous features by approximate aver-

age protein resSASAr values as determined by Miller

et al.61,62, Gly 5 85, Ala 5 113, Cys 5 140, Asp 5 151,

Glu 5 183, Phe 5 218, His 5 194, Ile 5 182, Lys 5 211,

Leu 5 180, Met 5 204, Asn 5 158, Pro 5 143, Gln 5 189,

Arg 5 241, Ser 5 122, Thr 5 146, Val 5 160, Trp 5 259

and Tyr 5 229, with r being the respective residue type.

These values determined by Miller et al. were then

replaced by our own protein average aveSASAr values

for each amino-acid type in its respective protein and

used to assert amino-acid standardization, resulting in

comp/aveSASAi, mon/aveSASAi, D/aveSASAi, and rel/aveSASAi

defined in Eqs. (7) to (10).

DSASAi5jcomp SASAi2mon SASAij (1)

rel SASAi5
DSASAi

mon SASAi

(2)

comp=res SASAi5
comp SASAi

res SASAr

(3)

mon=res SASAi5
mon SASAi

res SASAr

(4)

D=res SASAi5
DSASAi

res SASAr

(5)

rel=res SASAi5
relSASAi

resSASA r

(6)

comp=ave SASAi5
comp SASAi

ave SASA r

(7)

mon=ave SASAi5
mon SASAi

aveSASAr

(8)

D=ave SASAi5
DSASAi

ave SASAr

(9)

rel=ave SASAi5
relSASAi

aveSASAr

(10)

As the SASA features described from Eqs. (3) to (10)

have very low order of magnitude, the results presented

here were multiplied by a factor of 103.

Statistical treatment

Each feature generated earlier was divided into two

categories, HS and NS according to the experimental

DDGbinding data available. Using a Mann-Whitney U test

we determined whether the feature groups differ from

one another, thus showing the feature as capable of dis-

cerning between residues belonging to either group.

This is a nonparametric significance test which deter-

mines if a non-normal distributed group differs from

another non-normal distributed group. This test was

selected after determining, by box-plot analysis, that the

hot- and null-groups for each feature didn’t have a nor-

mal distribution and therefore a parametric test such as

ANOVA could not be used. We also fitted, using a lin-

ear regression, each group data against each corre-

sponding DDGbinding value in order to ascertain the

ability of each feature to predict variations in Gibbs free

energy upon ASM. Average and standard deviation val-

ues were also calculated for the two groups for each

feature.

Support vector machine (SVM)

Support vector machine is a supervised machine learn-

ing model in which two classes are classified according to

a model developed by training data with known class-

equivalence, in this case, HS and NS classes. Several ker-

nel options are available to perform the two-class separa-

tion. In this work, and considering the most-widely used

kernels, we selected the often used radial basis function

kernel after both linear and polynomial kernels having

worse performance in initial studies. The 248 interfacial

residues with known experimental ASM results were split

in a training set and a test set to better test our SVM

model. Randomly, 32 hot-spots and 32 null-spots were

selected to form the training set, resulting in a balanced

64-point training set, kept constant throughout the

learning processes. Thus, the test set was comprised of

the remaining data points, 33 hot-spots and 151 null-

spots. The datasets were then divided, 12 features per

data source available (PDB, explicit MD and implicit

Solvent-Accessible Surface Area
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MD) to combine between them. The length of the com-

bination group varied between 1 and 12 features per

algorithm training set, totaling 12,285 combinations

between the three sets, 4095 per dataset. Finally, to better

assess the MD cost-benefit relationship in hot-spot classi-

fication, we trained the algorithm with each feature

standard deviation by itself or the calculated value and

standard deviation of each feature in a 2-dimension

SVM. The performance of the hot-spot detection method

was assessed by the F1 score [Eq. (11)], which is defined

as a function of Precision [P, Eq. (12)] and Recall [R,

also called sensitivity, Eq. (13)]. F1 score, P and R can be

defined as:

F15
2PR

P1R
(11)

P5
TP

TP 1FP
(12)

R5
TP

TP 1FN
(13)

In which TP stands for true positive (predicted hot-

spots that are actual hot-spots), FP stands for false

positive (predicted hot-spots that are not actual hot-

spots), and FN stands for false negative (non-predicted

hot-spots that are actual hot-spots). Accuracy is

defined as the ratio of number of correctly predicted

residues to number of all predicted residues as in Eq.

(14):

Accuracy 5
TP 1TN

TP 1FP 1TN 1FN
(14)

In which TN are the true negatives (correctly predicted

null-spots). Specificity and NPV (negative predictive

value) are other measures of performance and are formu-

lated as:

Specificity 5
TN

TN 1FP
(15)

NPV 5
TN

FN 1TN
(16)

To guarantee that our models were not over trained

the statistical analysis values (F1 score, Recall, Precision)

were estimated by a ninefold cross-validation performed

on the training set for each of the SASA feature

combinations.

The validity and performance of the method was

determined by analyzing similar hot-spot prediction

methodologies in terms of overall F1, specificity and

accuracy over the same data used by us. The most widely

available hot-spot prediction methodologies focus on

protein-protein interfaces and therefore our tests com-

prise solely the protein-protein interface within our total

data-set, with the F1, specificity and accuracy determined

using our own developed methodology.

RESULTS

Dataset composition

Our database consists of 15 different protein based

structures, 10 in which the interface is a PP interface and

5 in which the interface is a PD interface. From those,

248 interfacial residues were used for our study, for

which experimental DDGbinding values upon alanine

mutation were available. The tested data set consists of

65 hot-spots, 26% of the total residues, and 183 null-

spots, 74% of the data, with a calculated P value between

the two groups’ experimental DDGbinding of 4.9 3 10233

as determined by a Mann-Whitney U test, providing a

large enough data set for statistical analysis. The amino-

acid type and group type distribution is as follows: Glu

(11%), Asp (8%), Phe (3%), Ile (6%), His (5%), Lys

(10%), Met (4%), Leu (3%), Asn (4%), Gln (5%), Ser

(5%), Arg (13%), Thr (4%), Trp (6%), Val (2%), Tyr

(10%); charged residues (46%), in which 28% are posi-

tively charged residues and 18% are negatively charged

residues; and 54% uncharged residues, with 29% of polar

behavior and 25% nonpolar. Within hot-spot and null-

spot datasets, group types were also determined, showing

a prevalence of non-polar residues (31%) within the hot-

spots group, being the negatively charged (18%) group

the least represented. However, in the null group the

prevalence is shared between positively charged and polar

subgroups, both with 30%. It is easy to see the deviations

from the general group behavior, with the marked

decrease of positively charged residues within the hot-

spot residues group, from 28% to 23%. The opposite is

true for nonpolar residues, having a greater relative num-

ber within the hot-spot subgroup, from 25% to 31%.

Conversely, within the null-spot subgroup there is a

greater prevalence of positively charged residues in com-

parison with the general behavior, from 28% to 30%.

The data set for experimental values spans a wide range

of DDGbinding, as shown in Figure 1, showing that the

sample encompasses most expected experimental Gibbs

free energy variations upon alanine scanning

mutagenesis.

Hot-spot and null-spot differentiation

It is necessary to achieve an answer for three key ques-

tions: “What is the correlation between the DDGbinding

and the SASA features values? What are their average val-

ues for hot-spots and null-spots? Can these features be

used for hot-spot detection?” Therefore, in order to eval-

uate the relationship between solvent accessibility and

binding free energy we have calculated the different

SASA features described in the methodology. The most

frequently used ones in the literature are compSASA and

DSASA. relSASA was already introduced by Cho et al.63

and Tuncbag et al.25.as a SASA feature. To the best of

our knowledge, the others ones were introduced and

J.M. Martins et al.
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applied to protein-protein interactions within this work.

We have analyzed the SASA/DDGbinding correlation for

the PDB, explicit and implicit MD and found out very

poor correlations between them for all SASA features

(Supporting Information Table S2). This behavior is in

agreement with the one described by Bogan and Thorn.5

However, the PDB obtained data shows better correlation

results throughout all the evaluated features. There is a

significant increase of the correlation when focusing our

attention in relSASAi and rel/resSASAi features and for the

charged residues. The energetic benefit of occluding bulk

solvent from charged interactions is easily understand-

able as a lower effective dielectric increases the interac-

tion strength of electrostatic and hydrogen bonding

interactions.

Mann-Whitney U tests for the SASA features

The medians and standard deviations of each feature

were determined for each type of data set; explicit water

MD, implicit water MD, and PDB, as shown in Table I,

Figure 2, and Supporting Information Table S3. The sta-

tistical Mann-Whitney U tests were done for the 12 fea-

tures in order to determine which were capable of

differentiating between the two groups, hot- and null-

spot, spanning the three different datasets explained ear-

lier, also present in the aforementioned tables. The

Mann-Whitney U compSASAi tests show that the differ-

ence between the groups’ medians is statistically valid,

with 4.06 3 1029, 7.0 3 10212, and 6.32 3 10212 for

implicit water MD, explicit water MD, and PDB HS and

NS group comparison. We can say that compSASAi

medians have a significant difference when characterizing

according to the DDGbinding values. monSASAi in the

implicit water data set shows a statistically irrelevant

Figure 1
DDGbinding distribution histogram.
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median difference between the two groups, evaluated by

the statistical test as 6.01 3 1022, with the same being

true for explicit water data. Their calculated median dif-

ference is once again statistically irrelevant, with 0.12 for

the explicit water groups’ difference. However, in the

data gathered with the PDB dataset, the same is not true.

We obtained a P value of 1.86 3 1022, below the statisti-

cal cut-off for group differentiation, with values of 88.95

and 78.49 for null- and hot-group. As expected, while

solvent accessibility in the complex form is related with

DDGbinding, solvent accessibility in the protein monomer

form is not an indication of the residues’ importance to

the protein interaction. The DSASA feature can be more

useful as it evaluates the variation between solvent acces-

sible area in the monomer and in the complex form. For

the implicit water data set, a P value of 2.38 3 1024

between the hot- and null-spot groups shows statistical

relevance between the two groups’ medians. The same is

true for the remaining data sets, with a P-value of 4.84

3 1026 and 6.93 3 1025 for explicit water data and

PDB calculated data, respectively. This shows that DSASA

is capable of differentiating between HS and NS to a

high degree. However, SASA variation upon complex for-

mation is not able to fully discriminate between HS and

NS, as evidenced by the standard deviation for the null-

and hot-groups calculated for implicit water MDs, 34.38

Å2 and 37.60 Å2 respectively, amounting to 1.77 and 0.70

times of the groups’ value, with similar magnitudes for

the other types of MD data origin. This is clearly unac-

ceptable as a mean of predicting whether a residue

belongs in either of the groups. For a better understand-

ing of the difference between hot- and null-spot residues,

one must look into amino acid standardization.

The amino acid standardization is implemented

through the use of Eqs. (2) through (10). The results

gathered show that the groups’ difference is statistically

relevant for all types of feature except for mon/resSASAi,

represented in Eq. (4). The corresponding values for sta-

tistical group variance difference obtained from the

implicit water data source are between 0.87, for mon/ave-

SASA
i

and 6.11 3 10210 for comp/resSASAi. The same is

true for the other data sources, explicit water MD and

PDB data, with the main difference being the extent of

group differentiation that standardization by amino-acid

SASA values achieves over the monSASAi dependent fea-

tures such as mon/resSASAi and mon/aveSASAi. In the

implicit water MD features’ P value, we have a decrease

from 6.01 3 1022 for monSASAi, 8.81 3 1023 for mon/

resSASAi, and an increase to 0.87 for mon/aveSASAi. For

the explicit water MD, the results are 0.12, 2.99 3 1022,

and 0.40 for the groups above mentioned, respectively.

In the case of the PDB gathered data, we found 1.86 3

1022 for monSASAi, 3.49 3 1023 for mon/resSASAi, and

0.97 for mon/aveSASAi. This shows that standardization

seems to have an impact over group differentiation,

allowing the improvement of features which, by them-

selves, are unable to differentiate between hot- and null-

spot residues. However, standardization seemed to

improve group differentiation when the standardization

values used where the previously published ones [Eqs.

(3–6)]. When using the ones obtained from the individ-

ual protein analysis, the results seem to worsen [Eqs. (7–

10)].

From this data analysis, a comparison is possible

between data sources and the usefulness of more compu-

tational costly methods such as molecular dynamics with

explicit water molecules. From observation of the statisti-

cal relevant group differentiation through the different

data origins we can say that the data originated from the

PDB is enough for the features tested to differentiate

between residues belonging to either group. However,

this test only refers to the feature capability of grouping

hot- and null-spot residues correctly and whether this

Figure 2
(a) Median value and standard deviation for compSASAi, monSASAi,

DSASAi, and rel/aveSASAi studied for hot- and null-spots (PDB dataset).

(b) Median value and standard deviation for the relSASAi, com/resSASAi,

mon/resSASAi, D/resSASAi, rel/resSASAi, comp/aveSASAi, mon/aveSASAi, and

D/aveSASAi for hot- and null-spots (PDB dataset). The results are pre-
sented for the three groups of residues analyzed (Total, NS, and HS).
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grouping is in accordance to the experimental DDGbinding

data available. Considering only the Mann-Whitney U

tests, it seems that the best features are the ones based

on relSASA, regardless of data source, showing consis-

tently the capability to differentiate between hot- and

null-spot groups. This is probably due to the residue

SASA standardization employed by these features, mak-

ing them a good candidate for SASA-based hot-spot

prediction.

Alternative hot- and null-spot definition analysis

The above analysis was also performed, with the single

difference being the DDGbinding for which a residue was

counted as being hot- and null-spot. The alternate defi-

nition tested was DDGbinding over or equal 1.5 kcal

mol21 for the hot-spot residues and below 0.5 kcal

mol21 for the null-spot residues. This reduces the total

number of data set points to 173, with 87 being null-

spots and 86 being hot-spots. The variation in the rela-

tive composition of the global data set shows a marked

preference toward keeping more charged residues, while,

conversely, excluding more uncharged residues. This is

visible in the relative composition variation for each

group and the group encompassing all the residues

within each subgroup, with the general group losing 30%

of its elements, while positively charged and negatively

charged residues groups losing 23% and 28%. For this

overall variation to occur there had to be larger losses in

the remaining groups, as happened to polar and non-

polar groups, by 32% and 38%. Regarding the Mann-

Whitney U tests between null-spot and hot-spot groups,

discernible differences were not found between the two

groups as defined by either definition. The feature which

seems to struggle to achieve hot and null-spot differen-

tiation is, as expected, the monSASAi and, subsequently,

those which depend on that value, mon/resSASAi and mon/

aveSASAi. Therefore, this alternative hot- and null-spot

definition does not offer great advantages towards dis-

cerning between features’ sub-groups, since the original

definition tested was shown to be capable of already dis-

cerning between hot- and null-spots within the various

feature calculated parameters. This lack of improvement

over the first definition tested, coupled with the large

number of dataset points ignored when employing this

alternative definition makes this alternative hot- and

null-spot definition a high-cost, low-advantage situation.

This could possibly change in the future, depending

mostly on the dataset composition and size, making this

definition more attractive toward hot- and null-spot

computational prediction and DDGbinding prediction. We

believe further tests are needed on different applications

of hot-spot prediction towards computational goals, such

as protein-protein docking scoring methods with well-

defined reference proteins, allowing us to accurately

determine the best correlated hot-spot definition with

real-world protein behavior.

Support vector machine (SVM)

Training set

We explore all possible combinations of the 12 features

and a ninefold cross-validation test was performed on

the training set for each of them. We have performed

this test only for the �2.0 kcal/mol (HS) and <2.0 kcal/

mol (NS) definition as the other HS definition would

diminish our available training and testing sets to an

extent that would impair the applicability of this SVM

method. We then sorted the combination results by nine-

fold cross-validation F1 and from this sorted list we

counted the feature frequency in the top 200 results, as

shown for the PDB set in Figure 3 with a 10 occurrences

cut-off, with the result of this test for the other two

datasets shown in Supporting Information Figure S1.

This way, we can easily identify the most common fea-

tures present in the best combinations obtained. These

are for the PDB dataset: rel/resSASAi (190), relSASAi (179),

compSASAi, (135) and rel/aveSASAi (119). The results are

in agreement with our Mann-Whitney U tests that dem-

onstrated that SASA standardization better discriminates

null- and hot-spots. For the explicit MD, the four more

populated are: DSASAi (140), D/resSASAi (113), mon/resSA-

SA
i

(103), and monSASAi (91); for implicit MD are:

DSASAi (159), rel/aveSASAi (136), monSASAi (133), and D/

resSASAi (132). The top 20 feature combinations for the

three data sets are shown in Tables (II–IV) For the PDB

dataset (Table II), the top 20 cross-validation F1 sorted

results from our SASA combinations have F1 scores in

Figure 3
Frequencies (number of models) in the top 200 combinations of the

various SASA features, ranked by F1 performance on the PDB training
set.
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the range 0.74 to 0.76, Precision 0.68 to 0.72, and Recall

0.75 to 0.81. For the top explicit MD results (Table III),

F1 varied between 0.68 and 0.71, Precision between 0.65

and 0.77, and Recall between 0.62 and 0.75. For the

implicit MD (Table IV), F1 score varied from 0.66 to

0.71, Precision from 0.64 to 0.74 and Recall from 0.63 to

0.75. The PDB results are slightly better and therefore,

for the sole purpose of hot-spots detection based on

SASA features, the computational cost of running an

MD does not seem to be worth it. Several studies suggest

that by using a small number of key features should be

enough for hot-spot detection whereas a high number

would lead to over-fitting. Having this in mind, we stress

out that our first four models in the PDB dataset com-

prise four to six features, with relSASAi and res/resSASAi

being common to all. The 20 best results (Supporting

Information Table S4) for the SVM algorithm are also

presented for single SASA features without combination

(F1: 0.46–0.64). Although, we clearly see a decrease of

the statistical tests, the PDB dataset still presents the best

results. MD influence over the SVM model capability

was tested by training the algorithm with: a two-

dimensional system containing each feature and its deter-

mined standard deviation; a single-dimensional system of

each feature; and a single-dimensional system for each

feature’s standard deviation. The results (Supporting

Information Tables S5 and S6) show that, either sorted

by ninefold cross-validation F1 or sorted by test-set F1,

the single-dimensional features’ standard deviation sets

consistently show worse performance than either single-

dimensional feature values set or the two-dimensional

set. Considering only the single feature value set and the

feature value with its standard deviation, it appears that

neither shows prevalence in the upper-scored tested

models, leading us to believe that this features’ standard

deviation doesn’t hold much information regarding the

hot- and null-spot prediction using this methodology.

This behavior could be predicted from inspection of Fig-

ure 2, which shows that the standard deviations are too

large, and therefore their potential as hot-spot discrimi-

nant is very low.

Table II
Top 20 Highest Feature Combinations Ranked by F1 Score in the PDB

Training Set

F1 Precision Recall Accuracy Sensitivity
Descriptors

used

0.76 0.72 0.81 0.75 0.81 5
0.76 0.72 0.81 0.75 0.81 6
0.76 0.72 0.81 0.75 0.81 4
0.76 0.72 0.81 0.75 0.81 4
0.75 0.70 0.81 0.73 0.81 7
0.75 0.71 0.78 0.73 0.78 5
0.75 0.71 0.78 0.73 0.78 5
0.75 0.71 0.78 0.73 0.78 5
0.75 0.71 0.78 0.74 0.78 5
0.75 0.71 0.78 0.73 0.78 6
0.75 0.71 0.78 0.73 0.78 5
0.75 0.71 0.78 0.73 0.78 6
0.74 0.68 0.81 0.72 0.81 6
0.74 0.68 0.81 0.72 0.81 7
0.74 0.68 0.81 0.72 0.81 6
0.74 0.68 0.81 0.72 0.81 7
0.74 0.73 0.75 0.73 0.75 4
0.74 0.69 0.78 0.72 0.78 7
0.74 0.69 0.78 0.72 0.78 6
0.74 0.69 0.78 0.72 0.78 8

Table III
Top 20 Highest Feature Combinations Ranked by F1 Score in the
Explicit MD Training Set

F1 Precision Recall Accuracy Sensitivity
Descriptors

used

0.71 0.73 0.69 0.71 0.69 4
0.70 0.75 0.66 0.72 0.66 3
0.70 0.71 0.69 0.71 0.69 3
0.70 0.71 0.69 0.71 0.69 4
0.70 0.68 0.72 0.69 0.72 4
0.70 0.65 0.75 0.67 0.75 4
0.70 0.65 0.75 0.67 0.75 6
0.69 0.77 0.63 0.72 0.63 4
0.69 0.72 0.66 0.71 0.66 5
0.69 0.72 0.66 0.70 0.66 4
0.69 0.72 0.66 0.70 0.66 5
0.69 0.69 0.69 0.69 0.69 4
0.69 0.69 0.69 0.69 0.69 4
0.69 0.66 0.72 0.67 0.72 3
0.69 0.66 0.72 0.67 0.72 6
0.69 0.63 0.75 0.66 0.75 4
0.69 0.63 0.75 0.66 0.75 5
0.68 0.74 0.63 0.70 0.63 5
0.68 0.70 0.66 0.69 0.66 4
0.68 0.70 0.66 0.69 0.66 6

Table IV
Top 20 Highest Feature Combinations Ranked by F1 Score in the

Implicit MD Training Set

F1 Precision Recall Accuracy Sensitivity
Descriptors

used

0.71 0.67 0.75 0.69 0.75 4
0.70 0.75 0.66 0.72 0.66 6
0.70 0.75 0.66 0.72 0.66 7
0.69 0.72 0.66 0.70 0.66 4
0.69 0.72 0.66 0.70 0.66 4
0.69 0.72 0.66 0.70 0.66 6
0.69 0.69 0.69 0.69 0.69 4
0.68 0.74 0.63 0.70 0.63 7
0.68 0.74 0.63 0.70 0.63 4
0.68 0.70 0.66 0.69 0.66 4
0.68 0.67 0.69 0.67 0.69 7
0.68 0.64 0.72 0.65 0.72 4
0.67 0.68 0.66 0.67 0.66 6
0.67 0.65 0.69 0.65 0.69 6
0.67 0.71 0.63 0.69 0.63 6
0.67 0.71 0.63 0.69 0.63 5
0.66 0.61 0.72 0.63 0.72 3
0.66 0.66 0.66 0.65 0.66 4
0.66 0.66 0.66 0.66 0.66 7
0.66 0.69 0.63 0.67 0.63 8
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Test set

We have tested all our 20 top models described in the

previous section on the remaining residues that consti-

tute our test set to assess their predictive performance.

Tables (V–VII) show the F1, Precision and Recall values

for the various feature combinations from the different

datasets. On the PDB dataset there is a slight increase of

the F1 score to 0.78–0.82, due to the increase of the Pre-

cision to 0.90–0.93. These values are extremely high espe-

cially upon comparison with the available HS detection

methods. The same trend of F1 scores increase is

attained for the explicit (F1: 0.66–0.84) and implicit (F1:

0.58–0.84) MD datasets. Supporting Information Table

S7 shows the results for the single feature in our inde-

pendent test set. In this case we cannot find a solid com-

mon pattern as some features really misbehave in the test

set whereas others present very high F1 score values. The

same can be said about the standard deviations (Sup-

porting Information Table S8). Supporting Information

Table S9 shows the results for the average plus standard

deviation of the SASA features within the MD datasets.

The upper models show a clear F1 score increase in the

test set (9% more than in the PDB dataset). We want to

highlight that we do believe that MD simulations, by

generating an ensemble of possible conformations of the

systems in study, are very useful for a more complete

comprehension of the HS and NS dynamic behavior.

However, we cannot forget the computational time

involved, and so the choice between MD/PDB should be

Table V
Performance of the 20 Best Combinations of the PDB Dataset on an

Independent Test Set

F1 Precision Recall Accuracy Sensitivity
Descriptors

used

0.81 0.91 0.73 0.72 0.73 5
0.82 0.90 0.75 0.72 0.75 6
0.80 0.92 0.71 0.71 0.71 4
0.80 0.92 0.71 0.71 0.71 4
0.83 0.90 0.76 0.73 0.76 7
0.81 0.93 0.73 0.72 0.73 5
0.82 0.92 0.74 0.73 0.74 5
0.82 0.91 0.74 0.72 0.74 5
0.81 0.92 0.73 0.72 0.73 5
0.82 0.92 0.75 0.73 0.75 6
0.82 0.92 0.75 0.73 0.75 5
0.83 0.91 0.76 0.73 0.76 6
0.81 0.90 0.73 0.71 0.73 6
0.78 0.90 0.69 0.68 0.69 7
0.81 0.92 0.73 0.72 0.73 6
0.79 0.90 0.70 0.68 0.70 7
0.81 0.92 0.73 0.72 0.73 4
0.81 0.91 0.73 0.72 0.73 7
0.81 0.90 0.73 0.71 0.73 6
0.79 0.90 0.71 0.69 0.71 8

Table VII
Performance of the 20 Best Combinations of the Implicit MD Training

Set on an Independent Test Set

F1 Precision Recall Accuracy Sensitivity
Descriptors

used

0.71 0.89 0.59 0.60 0.59 4
0.75 0.92 0.63 0.65 0.63 6
0.58 0.87 0.44 0.48 0.44 7
0.77 0.91 0.67 0.67 0.67 5
0.77 0.91 0.67 0.67 0.67 5
0.75 0.88 0.65 0.64 0.65 7
0.66 0.88 0.52 0.54 0.52 4
0.75 0.91 0.64 0.65 0.64 7
0.68 0.93 0.53 0.58 0.53 4
0.74 0.90 0.63 0.63 0.63 4
0.81 0.90 0.74 0.71 0.74 7
0.83 0.88 0.79 0.73 0.79 4
0.76 0.87 0.68 0.65 0.68 6
0.65 0.84 0.52 0.52 0.52 6
0.84 0.91 0.77 0.75 0.77 6
0.77 0.90 0.67 0.67 0.67 5
0.58 0.90 0.42 0.48 0.42 3
0.78 0.88 0.70 0.67 0.70 4
0.75 0.89 0.64 0.64 0.64 7
0.75 0.89 0.65 0.65 0.65 8

Table VI
Performance of the 20 Best Combinations of the Explicit MD Training
Set on an Independent Test Set

F1 Precision Recall Accuracy Sensitivity
Descriptors

used

0.66 0.90 0.52 0.55 0.52 4
0.70 0.96 0.56 0.61 0.56 3
0.84 0.92 0.76 0.75 0.76 3
0.79 0.93 0.69 0.70 0.69 4
0.82 0.93 0.73 0.73 0.73 4
0.82 0.94 0.73 0.74 0.73 4
0.82 0.89 0.76 0.72 0.76 6
0.80 0.93 0.71 0.71 0.71 4
0.74 0.94 0.61 0.65 0.61 5
0.76 0.94 0.63 0.66 0.63 4
0.68 0.93 0.54 0.58 0.54 5
0.80 0.94 0.69 0.71 0.69 4
0.76 0.94 0.63 0.66 0.63 4
0.83 0.91 0.77 0.74 0.77 3
0.83 0.90 0.77 0.74 0.77 6
0.76 0.88 0.67 0.65 0.67 4
0.84 0.87 0.82 0.74 0.82 5
0.75 0.93 0.63 0.66 0.63 5
0.78 0.94 0.66 0.68 0.66 4
0.69 0.95 0.54 0.59 0.54 6

Table VIII
Comparison of Performance of the Proposed SBHD Method in the Test
Set Against Other Available Hot-Spot Prediction Methodologies

Methodology F1 Accuracy Sensitivity Precision Specificity NPV

SBHD 0.86 0.77 0.77 0.97 0.75 0.26
Promate 0.25 0.73 0.94 0.50 0.94 0.75
ROBETTA 0.51 0.76 0.87 0.57 0.87 0.81
KFC2-A 0.50 0.80 0.96 0.76 0.96 0.80
KFC2-B 0.51 0.77 0.89 0.61 0.89 0.81
HotPoint 0.58 0.77 0.84 0.58 0.84 0.84
ISIS 0.08 0.71 0.96 0.33 0.96 0.73
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made taking into account the ratio quality/time that

each researcher intends to achieve.

So, a combination of a low number of standardized

features in a static structure could be the best way to get

an accurate and fast method. Thus, we present here a

new method: Sasa-Based Hot-spot Detection (SBHD).

This method consists in the evaluation of 6 SASA param-

eters in a PDB structure: compSASAi, monSASAi, relSASAi,

comp/resSASAi, rel/resSASAi and rel/aveSASAi. Its F1, Preci-

sion, and Recall values in the training and test set are:

0.76 versus 0.82, 0.72 versus 0.90, 0.81 versus 0.75,

respectively. These values are higher than the ones

reported until now in literature.

The external assessment of the developed method in
comparison to other hot-spot prediction methods is
summarized in Table VIII. As most available methods are

only tested for protein-protein interface’s hot-spot pre-
diction, we limited our tested data to the protein-protein
relevant subset and ran the prediction methodology for
each available methodology as well as our own proposed
methodology. It is clearly visible that, even though our
machine-learning-assisted methodology only takes into
account some of the SASA descriptors put forth in this
work, it still achieves a comparable or better performance

than the previously proposed methodologies. The F1
achieved using this method showed a big improvement
over the available methods, while the accuracy kept close
to the best available methods while losing some group
sensitivity towards the other available methods. Table
VIII clearly shows that the SBHD approach presents a
precision well above the other methods, which shows its

good performance. However, it presents a limitation.
Although, it predicts true hot-spots very well, it also
incorrectly predicts many null-spots as false hot-spots
(low NPV value), showing an aspect in which further
improvement can be achieved. It is, however, important
to stress that our methodology showed even better over-
all results when composition of the test dataset is mixed

between protein-protein interface sets and protein-DNA
sets. This makes us confident that incorporating further
interfacial residue descriptors such as CASM and genetic
conservation could improve on the results already
achieved by us.

DISCUSSION AND
CONCLUSIONS

The study of this dataset improved the current knowl-

edge about the use of Solvent Accessible Surface Area

features as a way to predict hot- and null-spots within a

protein-based interface. SASA features were shown to be

capable of differentiating between hot- and null-spot

groups, regardless of the hot-spot definition used. The

improvement achieved through the use of more time-

widespread data origins, explicit and implicit water

molecular dynamics, was tested against the SASA features

obtained from static PDB structures. We found that the

computational costs associated with the bigger sample

size and the more complex MD calculations did not pro-

vide enough improvement over the results obtained

through the use of the static PDB structures. The various

SASA features showed to be equally able to differentiate

between the hot- and null-spot groups, making the

increased computational cost unnecessary in this particu-

lar application. The correlation tests showed poor overall

correlations between the experimental DDGbinding and the

calculated SASA features, regardless of the dataset source.

Nonetheless, and in particular when specific residue

types are selected, relSASAi and rel/resSASAi were shown to

achieve the best correlation values with the experimental

values. This showed us that residue standardization

improves the features as a tool to predict DDGbinding val-

ues. To verify their use in hot-spot detection methods we

have performed a SVM study of the features by them-

selves and in the various possible combinations. The per-

formance of our approach was validated by a ninefold

cross-validation and by using an independent test set.

We showed that the same two features (relSASAi and

rel/resSASAi) were highly represented in the top 200 mod-

els and in the best predictor models. We concluded that

the PDB dataset shows the best results with F1 ranging up

to 0.82. Therefore, we present our new method SBHD

that consists in the evaluation of 6 features (compSASAi,

monSASAi, relSASAi, comp/resSASAi, rel/resSASAi, and

rel/aveSASAi). We have also to stress out that the combina-

tion of the average and standard deviation value of the rel/

resSASAi in explicit MD give a F1 score of 0.91, which is

surprisingly high but the computational time involved

does not make the improvement over the PDB dataset

worthy.
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